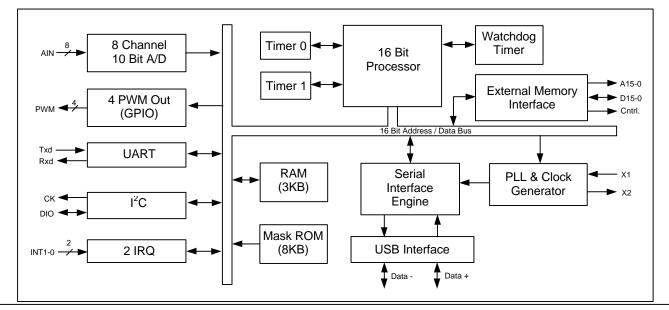


# KCUSB3

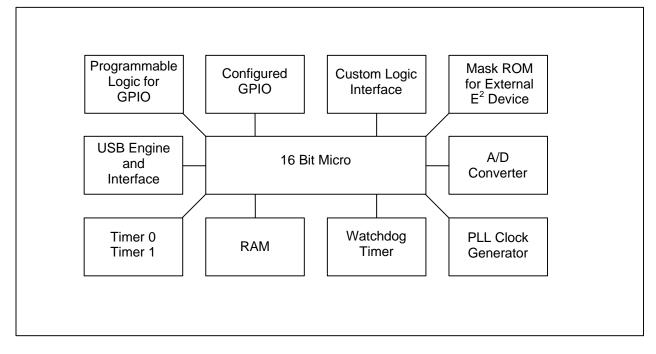
### **USB Controller – Quick Interface**

# **General Description**

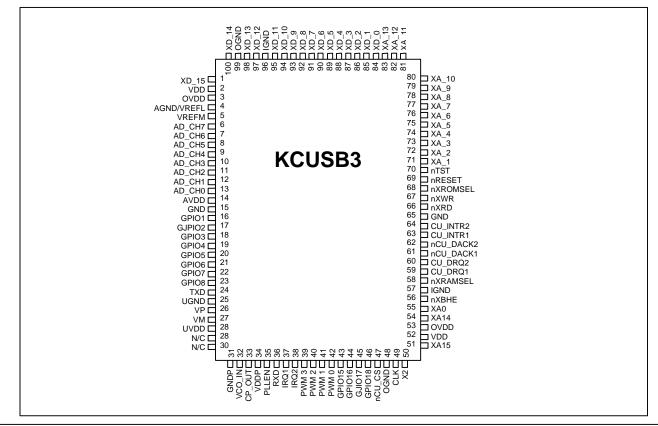

The Kawasaki KCUSB3 Controller is a quick single chip solution to interface peripheral devices to the Universal Serial Bus (USB). The KCUSB3 has been specifically designed to provide a simple and fast method of designing interfaces for peripheral devices to the USB port. This has been accomplished by its highly integrated functionality and flexible General Purpose I/O (GPIO) that can be configured to your system requirements. This device has been configured with a wide range of capabilities for your immediate use or evaluation. The device can then be reconfigured for your specific application. You can directly access the embedded processor's address and data lines to use external programmable logic for evaluation before configuring the GPIO for your final device. The SIE (Serial Interface Engine) is fully compatible with the USB specification.

### Features

- Advanced 16 Bit processor for USB transaction processing and control data processing
- USB interface ver 1.0/1.1 compliant
- Transceivers and SIE (Serial Interface Engine)
- Internal Clock Generation
- Utilizes low cost external crystal circuitry
- 1.5K x 16 Internal RAM buffer
- 2 IRQ
- 8 Channel, 10 Bit A/D


- External Memory Interface for direct access to the 16-bit processor for using external logic or memory.
- General purpose I/O
- Watchdog timer
- PWM Output Support
- 8K user programmable gates
- 8K bytes ROM
- I<sup>2</sup>C Interface
- 100 pin QFP package

### **Block Diagram (Application Example)**






### **KCUSB3 Basic Blocks**



# **Pin Diagram**





# **Pin Description**

| Pin<br>Number | I/O    | Pin Name   | Description                   | Programmable<br>I/O Mode * |
|---------------|--------|------------|-------------------------------|----------------------------|
| 1             | IN/OUT | XD_15      | External Data Pins            |                            |
| 2             | IN     | VDD        | VDD                           |                            |
| 3             | IN     | OVDD       | VDD                           |                            |
| 4             | IN     | AGND/VREFL | Analog GND                    |                            |
| 5             | OUT    | VREFM      | AD converter reference        |                            |
| 6             | IN     | AD_CH7     | A/D Converter Input           |                            |
| 7             | IN     | AD_CH6     | A/D Converter Input           |                            |
| 8             | IN     | AD_CH5     | A/D Converter Input           |                            |
| 9             | IN     | AD_CH4     | A/D Converter Input           |                            |
| 10            | IN     | AD_CH3     | A/D Converter Input           |                            |
| 11            | IN     | AD_CH2     | A/D Converter Input           |                            |
| 12            | IN     | AD_CH1     | A/D Converter Input           |                            |
| 13            | IN     | AD_CH0     | A/D Converter Input           |                            |
| 14            | IN     | AVDD       | Analog VDD                    |                            |
| 15            | IN     | GND        | GND                           |                            |
| 16            | IN/OUT | GPIO1      | General GPIO                  | GPIO1                      |
| 17            | IN/OUT | GPIO2      | General GPIO                  | GPIO2                      |
| 18            | IN/OUT | GPIO3      | General GPIO                  | GPIO3                      |
| 19            | IN/OUT | GPIO4      | General GPIO                  | GPIO4                      |
| 20            | IN/OUT | GPIO5      | General GPIO                  | GPIO5                      |
| 21            | IN/OUT | GPIO6      | General GPIO                  | GPIO6                      |
| 22            | IN/OUT | GPIO7      | General GPIO                  | GPIO7                      |
| 23            | IN/OUT | GPIO8      | General GPIO                  | GPIO8                      |
| 24            | OUT    | TXD        | UART TXD                      |                            |
| 25            | IN     | UGND       | USB GND                       |                            |
| 26            | IN/OUT | VP         | USB + Pin                     |                            |
| 27            | IN/OUT | VM         | USB – Pin                     |                            |
| 28            | IN     | UVDD       | USB VDD                       |                            |
| 29            | NC     | NC         | NC                            |                            |
| 30            | NC     | NC         | NC                            |                            |
| 31            | IN     | GNDP       | GND                           |                            |
| 32            | IN     | VCO_IN     | PLL VCO_IN                    |                            |
| 33            | OUT    | CP_OUT     | PLL VCO Out                   |                            |
| 34            | IN     | VDDP       | VDD                           |                            |
| 35            | IN     | PLLEN      | PLL Enable                    |                            |
| 36            | IN     | RXD        | UART RXD                      |                            |
| 37            | IN     | IRQ1       | Edge sens. Interrupt          | GPIO9                      |
| 38            | IN     | IRQ2       | Edge sens. Interrupt          | GPIO10                     |
| 39            | OUT    | PWM3       | Pulse Width Modulator 3       | GPIO11                     |
| 40            | OUT    | PWM2       | Pulse Width Modulator 2 GPIO1 |                            |
| 41            | OUT    | PWM1       | Pulse Width Modulator 1       | GPIO13                     |
| 42            | OUT    | PWM0       | Pulse Width Modulator 0       | GPIO14                     |
| 43            | IN/OUT | GPIO15     |                               | GPIO15                     |
| 44            | IN/OUT | GPIO16     |                               | GPIO16                     |
| 45            | IN/OUT | GPIO17     |                               | GPIO17                     |

| Pin I/O Pin Name<br>Number |        | Pin Name     | Description                            | Programmable<br>I/O Mode * |  |
|----------------------------|--------|--------------|----------------------------------------|----------------------------|--|
| 46                         | IN/OUT | GPIO18       |                                        | GPIO18                     |  |
| 47                         | IN/OUT | nCU_cs       | Custom Logic Chip_Select               | GPIO19                     |  |
| 48                         | IN     | OGND         | GND                                    |                            |  |
| 49                         | IN     | CLK          | 12MHz Clock/Crystal Input              |                            |  |
| 50                         | OUT    | X2           | 12MHz Crystal Output                   |                            |  |
| 51                         | OUT    | XA_15        | External Address Pins                  |                            |  |
| 52                         | IN     | VDD          | VDD                                    |                            |  |
| 53                         | IN     | OVDD         | VDD                                    |                            |  |
| 54                         | OUT    | XA_14        | External Address Pins                  |                            |  |
| 55                         | OUT    | XA0          | External Address Pin                   |                            |  |
| 56                         | OUT    | nXBHE        | External byte High Enable (Active low) |                            |  |
| 57                         | IN     | IGND         | GND                                    |                            |  |
| 58                         | OUT    | nXRAMSEL     | External RAM CS (Active low)           |                            |  |
| 59                         | IN/OUT | CU_DRQ1      | Custom Logic DMA Rq#1                  | GPIO20                     |  |
| 60                         | IN/OUT | CU DRQ2      | Custom Logic DMA Rg#2                  | GPIO21                     |  |
| 61                         | IN/OUT | nCU DACK1    | Custom Logic DMA Ack#1                 | GPIO22                     |  |
| 62                         | IN/OUT | nCU DACK2    | Custom Logic DMA Ack#2                 | GPIO23                     |  |
| 63                         | IN/OUT | CU INTR1     | Custom Logic Intreq #1                 | GPIO24                     |  |
| 64                         | IN/OUT | CU INTR2     | Custom Logic Intreq #2                 | GPIO25                     |  |
| 65                         |        | GND          | GND                                    | 011020                     |  |
| 66                         |        | nXRD         | External Memory Read (Active low)      |                            |  |
| 67                         |        | nXWR         | External Memory Write (Active low)     |                            |  |
| 68                         | OUT    | nXROMSEL     | External ROM CS (Active low)           |                            |  |
| 69                         | <br>IN | nRESET       | Reset Pin                              |                            |  |
| 70                         | IN     | nTST         | Test Pin, Disconnect for Normal        |                            |  |
| 70                         |        | 1131         | Operation                              |                            |  |
| 71                         | OUT    | XA_1         | External Address Pin                   |                            |  |
| 72                         | OUT    | XA_2         | External Address Pin                   |                            |  |
| 73                         | OUT    | XA_3         | External Address Pin                   |                            |  |
| 74                         | OUT    | XA_4         | External Address Pin                   |                            |  |
| 75                         | OUT    | XA_5         | External Address Pin                   |                            |  |
| 76                         | OUT    | XA_6         | External Address Pin                   |                            |  |
| 77                         | OUT    | XA_7         | External Address Pin                   |                            |  |
| 78                         | OUT    | XA_8         | External Address Pin                   |                            |  |
| 79                         | OUT    | XA_9         | External Address Pin                   |                            |  |
| 80                         | OUT    | XA_10        | External Address Pin                   |                            |  |
| 81                         | OUT    | XA_11        | External Address Pin                   |                            |  |
| 82                         | OUT    | XA_12        | External Address Pin                   |                            |  |
| 83                         | OUT    | XA_13        | External Address Pin                   |                            |  |
| 84                         | IN/OUT | XD_0         | External Data Pins                     |                            |  |
| 85                         | IN/OUT | XD_1         | External Data Pins                     |                            |  |
| 86                         | IN/OUT | XD_2         | External Data Pins                     |                            |  |
| 87                         | IN/OUT | XD 3         | External Data Pins                     |                            |  |
| 88                         | IN/OUT | XD_4         | External Data Pins                     |                            |  |
| 89                         | IN/OUT | XD_5         | External Data Pins                     |                            |  |
| 90                         | IN/OUT | XD_6         | External Data Pins                     |                            |  |
| 91                         | IN/OUT | XD_0<br>XD 7 | External Data Pins                     |                            |  |
| 92                         | IN/OUT | XD7<br>XD8   | External Data Pins                     |                            |  |
| 92                         | IN/OUT | XD_8         | External Data Pins                     |                            |  |

| Pin<br>Number | I/O    | Pin Name | Description        | Programmable<br>I/O Mode * |
|---------------|--------|----------|--------------------|----------------------------|
| 94            | IN/OUT | XD_10    | External Data Pins |                            |
| 95            | IN/OUT | XD_11    | External Data Pins |                            |
| 96            | IN     | IGND     | GND                |                            |
| 97            | IN/OUT | XD_12    | External Data Pins |                            |
| 98            | IN/OUT | XD_13    | External Data Pins |                            |
| 99            | IN     | OGND     | GND                |                            |
| 100           | IN/OUT | XD_14    | External Data Pins |                            |

\* Dedicated GPIO's are not selected.

### **Function Description**

#### **16 Bit Processor**

The integrated 16 bit processor serves as a micro controller for USB peripherals. The processor can execute approximately five million instructions per second. With this processing power it allows the design of intelligent peripherals that can process data prior to passing it on to the host PC, thus improving overall performance of the system. The masked ROM (4K X 16) in the KCUSB3 or external memory contains a specialized instruction set that has been designed for highly efficient coding of processing algorithms and USB transaction processing.

The 16-bit processor is designed for efficient data execution by having direct access to the RAM Buffer, external memory, I/O interfaces, and all the control and status registers. The divide/multiply feature expands the capability of USB peripherals.

The processor contains sixteen general-purpose registers along with several special purpose registers including a flag register and an interrupt enable register. Eight of these registers can be used for indirect Addressing, with optional indexed and auto increment modes available. One of these general-purpose registers is additionally used as a stack pointer. The register set is mapped into RAM, and can be easily relocated for fast context switching.

The processor supports prioritized vectored hardware interrupts. In addition, as many as 240 software interrupt vectors are available.

The processor provides six addressing modes, supporting memory-to-memory, memory-to-register, register-to-register, immediate-to-register or immediate-to-memory operations. Register, direct, immediate, indirect, and indirect indexed addressing modes are supported. In addition, there is an auto-increment mode in which a register, used as an address pointer is automatically incremented after each use, making repetitive operations more efficient both from a programming and a performance standpoint.

The processor features a full set of program control, logical, and integer arithmetic instructions. All instructions are sixteen bits wide, although some instructions require operands, which may occupy another one or two words. Several special "short immediate" instructions are available, so that certain frequently used operations with small constant operand will fit into a 16-bit instruction.



#### The Processor – Divide/Multiply function

The processor's divide/multiply function contains all the instructions of the base processor that additionally includes integer divide and multiply instructions. A signed multiply instructions takes two 16-bit operands and returns a 32-bit result. A signed divide instruction divides a 32-bit operand by a 16-bit operand.

#### **RAM Buffer**

The USB controller contains a 3K byte (1.5K X 16) internal buffer memory. The memory is used to buffer data and USB packets and accessed by the 16 Bit processor and the SIE. USB transactions are automatically routed to the memory buffer. The 16-bit processor has the ability to set up pointers and block sizes in buffer memory for USB transactions. Data is read from the interface and is processed and packetized by the 16-bit I/O processor.

#### **PLL Clock Generator**

The PLL circuitry is provided to generate the internal 48MHz clock requirements. This circuitry is designed to allow use of a low cost 12 MHz external crystal which is connected to the KCUSB3 pins X1 and X2. If an external 12 MHz clock is available in the application, it may be used in lieu of the crystal circuit and connected directly to the X1 input pin.

#### **USB** Interface

The USB controller meets the Universal Serial Bus (USB) specification ver 1.0. The transceiver is capable of transmitting and receiving serial data at the USB's full speed, 12 Mbits/sec data rate. The driver portion of the transceiver is differential, while the receive section is comprised of a differential receiver and two single ended receivers. Internally, the transceiver interfaces to the SIE logic. Externally, the transceiver connects to the physical layer of the USB.

#### A/D interface

The integrated A/D interface is a ten bit A/D interface with eight Analog Inputs and converts data at 100K samples per second.

#### **PWM Interface**

Four PWM output channels are available with each channel capable of converting 10 bits at a rate up to 48 KHz.

#### UART Interface

Supports a transfer rate of 900 to 115.2K baud.

#### General Purpose I/O

Up to 25 general purpose I/O signals are available. Most of the GPIOs can be configured for special purpose functions such as PWM, Serial EEPROM interface, Digital Input, etc.



#### Serial EEPROM Support

The USB Controller serial interface is used to provide access to external EEPROM's. The interface is implemented using General Purpose I/O signals and can support a variety of serial EEPROM formats.

#### **Custom Logic Interface**

The internal 16 bit data and address bus is connected to the Custom Logic block allowing custom logic to interface to the processor and to access a selection of GPIO pins.

#### **Development Tools**

To assist in the development of USB products, an evaluation board is available as well as a set of software tools and debuggers. Compilers and debuggers are available through third party suppliers.



### **Electrical Characteristics**

ABSOLUTE MAXIMUM RATINGS

| Parameter           | Symbol                        | Ratings                       | Unit |
|---------------------|-------------------------------|-------------------------------|------|
| Supply Voltage      | $V_{DD5}$                     | -0.6 to 6.0                   | V    |
|                     | V <sub>DD</sub>               | -0.3 to 4.0                   | V    |
| Input Voltage       | V <sub>IN</sub> (Normal)      | -0.6 to V <sub>DD5</sub> +0.6 | V    |
|                     |                               | -0.3 to V <sub>DD</sub> +0.3  | V    |
|                     | V <sub>IN</sub> (5V Tolerant) | -0.3 to 7.3                   | V    |
| DC Output Current   | I <sub>OUT</sub>              | ±30 *                         | mA   |
| Storage Temperature | TSTG                          | -55 to 125 **                 | °C   |

\*24mA buffers

\*\*Plastic Package

#### DC Characteristics and conditions (V<sub>DD5</sub> @ 3V±.3V)

| Symbol          | Parameter               | Condition                         | Value |      |      | Unit |
|-----------------|-------------------------|-----------------------------------|-------|------|------|------|
| -               |                         |                                   | Min   | Тур  | Max  |      |
| $V_{DD5}$       | Supply Voltage          | -                                 | 3.0   | 3.3  | 3.6  | V    |
| V <sub>IH</sub> | Input high voltage      | CMOS                              | 2.15  | -    | -    | V    |
| V <sub>IL</sub> | Input low voltage       | CMOS                              | -     | -    | 0.95 | V    |
| V+              | Input high voltage      | TTL Schmitt                       |       | 1.32 | 1.75 | V    |
|                 |                         | CMOS Schmitt                      |       | 2.17 | 2.65 | V    |
| V-              | Input low voltage       | TTL Schmitt                       | 0.45  | 0.86 | -    | V    |
|                 |                         | CMOS Schmitt                      | 0.50  | 1.03 | -    | V    |
| V <sub>H</sub>  | Hysteresis voltage      | TTL Schmitt                       | 0.25  | -    | -    | V    |
|                 |                         | CMOS Schmitt                      | 0.56  | -    | -    | V    |
| I <sub>IH</sub> | Input high current      | $V_{IN} = V_{DD5}$                | -10   | -    | 10   | μA   |
| I <sub>IL</sub> | Input low current       | $V_{IN} = V_{ss}$                 | -10   | -    | 10   | μA   |
| V <sub>OH</sub> | Output high voltage     | I <sub>OH</sub> = -4mA            | 2.4   | -    | -    | V    |
| V <sub>OL</sub> | Output low voltage      | $I_{OL} = 4mA$                    | -     | -    | 0.4  | V    |
| l <sub>oz</sub> | 3-state leakage current | V <sub>OL</sub> =V <sub>DD5</sub> | -10   | -    | 10   | μA   |
|                 | _                       | V <sub>IN</sub> =V <sub>SS</sub>  | -12   | -34  | -100 | μA   |

\*IDDS is design dependent

Kawasaki LSI assumes no responsibility or liability for (1) any errors or inaccuracies contained in the information herein and (2) the use of the information or a portion thereof in any application, including any claim for (a) copyright or patent infringement or (b) direct, indirect, special or consequential damages. There are no warranties extended or granted by this document. The information herein is subject to change without notice form Kawasaki LSI

March 1998 • ©Copyright 1998 • Kawasaki LSI • Printed in U.S.A